Search results

Search for "propylene carbonate" in Full Text gives 11 result(s) in Beilstein Journal of Organic Chemistry.

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • (acetylacetonate) in the cross-coupling cycle. They achieved the desired cross-coupling products 89 with the reaction conducted in open air and under mild conditions (Scheme 35) [109]. Notably, the use of propylene carbonate as the co-solvent removed the need for inclusion of reductant or oxidant additives, such
PDF
Album
Review
Published 07 Jul 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Valorisation of plastic waste via metal-catalysed depolymerisation

  • Francesca Liguori,
  • Carmen Moreno-Marrodán and
  • Pierluigi Barbaro

Beilstein J. Org. Chem. 2021, 17, 589–621, doi:10.3762/bjoc.17.53

Graphical Abstract
  • chirality of lactic acid, three forms of PLA (ʟ, PLLA; ᴅ, PDLA; ᴅʟ, PDLLA) with slightly different properties (crystallinity, Tg 60–65 °C, Tm 130–180 °C) exist [256]. PLA is soluble in benzene, tetrahydrofuran, ethyl acetate, propylene carbonate and dioxane [257], and it is biodegradable [258][259]. Because
PDF
Album
Review
Published 02 Mar 2021

Azo-dimethylaminopyridine-functionalized Ni(II)-porphyrin as a photoswitchable nucleophilic catalyst

  • Jannis Ludwig,
  • Julian Helberg,
  • Hendrik Zipse and
  • Rainer Herges

Beilstein J. Org. Chem. 2020, 16, 2119–2126, doi:10.3762/bjoc.16.179

Graphical Abstract
  • -epoxypropane to propylene carbonate using an aluminum porphyrin and a photoresponsive ligand. The catalytic activity of the metal porphyrin depended on the axial coordination of an azostilbene and coordination of the latter ligand was controlled by photoisomerization of the stilbene unit [9]. Hecht et al
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2020

Suzuki–Miyaura cross coupling is not an informative reaction to demonstrate the performance of new solvents

  • James Sherwood

Beilstein J. Org. Chem. 2020, 16, 1001–1005, doi:10.3762/bjoc.16.89

Graphical Abstract
  • conventional solvents. In this work, the suitability of the Suzuki–Miyaura reaction to demonstrate the usefulness of new solvents was evaluated, including Cyrene™, dimethyl isosorbide, ethyl lactate, 2-methyltetrahydrofuran (2-MeTHF), propylene carbonate, and γ-valerolactone (GVL). It was found that the cross
  • lactate [10], 2-methyltetrahydrofuran (2-MeTHF) [11], γ-valerolactone (GVL) [12], dimethyl isosorbide (DMI) [6], and propylene carbonate [7]. This study compares solvents under the same conditions to offer a fair comparison. Additional solvents were included to ensure a range of polarities were
  • -pyrrolidone (NMP) and 2-propanol (IPA) resulted in complete conversion, and the product could be isolated by crystallisation from diethyl ether. Propylene carbonate also provided excellent conversion to the product (98%). The alcohol functionalised solvents outperformed their aprotic analogues, while Cyrene
PDF
Album
Supp Info
Letter
Published 13 May 2020

Base metal-catalyzed benzylic oxidation of (aryl)(heteroaryl)methanes with molecular oxygen

  • Hans Sterckx,
  • Johan De Houwer,
  • Carl Mensch,
  • Wouter Herrebout,
  • Kourosch Abbaspour Tehrani and
  • Bert U. W. Maes

Beilstein J. Org. Chem. 2016, 12, 144–153, doi:10.3762/bjoc.12.16

Graphical Abstract
  • high temperatures the authors switched to propylene carbonate as the solvent. Chemoselectivity When multiple activated methylene motifs are present the chemoselective oxidation of one of these positions can be achieved as we previously exemplified for 2-methyl-6-(4-methylbenzyl)pyridine (18b, Table 5
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2016

Robust bifunctional aluminium–salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides

  • Yuri A. Rulev,
  • Zalina Gugkaeva,
  • Victor I. Maleev,
  • Michael North and
  • Yuri N. Belokon

Beilstein J. Org. Chem. 2015, 11, 1614–1623, doi:10.3762/bjoc.11.176

Graphical Abstract
  • (101 MHz, CDCl3) δ 157.83, 154.76, 129.78, 122.08, 114.69, 74.20, 66.95, 66.32. Propylene carbonate: 1H NMR (400 MHz, CDCl3) δ 4.92–4.67 (m, 1H), 4.64–4.38 (m, 1H), 4.07–3.89 (m, 1H), 1.47–1.36 (m, 3H); 13C NMR (101 MHz, CDCl3) δ 155.22, 73.74, 70.78, 19.45. 1,2-Hexylene carbonate: 1H NMR (400 MHz
PDF
Album
Full Research Paper
Published 11 Sep 2015

Surprisingly facile CO2 insertion into cobalt alkoxide bonds: A theoretical investigation

  • Willem K. Offermans,
  • Claudia Bizzarri,
  • Walter Leitner and
  • Thomas E. Müller

Beilstein J. Org. Chem. 2015, 11, 1340–1351, doi:10.3762/bjoc.11.144

Graphical Abstract
  • )–cyanomethyl complex [38]. They proposed two reaction steps: insertion of carbon dioxide forming a copper(I) cyanoacetate as activated CO2 carrier that reacts in a second step with propylene oxide (see Scheme 6). Formation of propylene carbonate subsequently involves the oxidative transformation of an eight
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2015

Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts

  • Jong Yeob Jeon,
  • Seong Chan Eo,
  • Jobi Kodiyan Varghese and
  • Bun Yeoul Lee

Beilstein J. Org. Chem. 2014, 10, 1787–1795, doi:10.3762/bjoc.10.187

Graphical Abstract
  • afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalate)s because of the drift in the PA concentration during the terpolymerization. Both
  • production of poly(propylene carbonate) (PPC) using catalyst 1 is at the stage of the final decision regarding a commercial investment. Another success story using double metal cyanide (DMC) catalysts has been reported recently [20]. The DMC catalysts provided low-molecular-weight CO2/PO copolymers
  • dissolved in THF-d8, in which both PA and the resulting polymer were freely soluble. Upon shortening the reaction time to 1.5, 2.0, and 2.5 h, unreacted PA signals were observed at 8.0 and 7.9 ppm along with the resulting polymer signals (Figure 1(B)). In all cases, negligible amounts of propylene carbonate
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2014

Efficient electroorganic synthesis of 2,3,6,7,10,11-hexahydroxytriphenylene derivatives

  • Carolin Regenbrecht and
  • Siegfried R. Waldvogel

Beilstein J. Org. Chem. 2012, 8, 1721–1724, doi:10.3762/bjoc.8.196

Graphical Abstract
  • acidic hydrolysis. The electrolysis is conducted in propylene carbonate circumventing toxic and expensive acetonitrile. The protocol is simple to perform and superior to other chemical or electrochemical methods. The key of the method is based on the low solubility of the anodically trimerized product
  • . The shift of potentials is supported by cyclic voltammetry studies. Keywords: catechol; electrochemical oxidation; hexahydroxytriphenylene; ketals; propylene carbonate; Introduction The unique spectroscopic and geometric features of triphenylenes give rise to a variety of applications for this very
  • adversely affected by its severe toxicity and significant costs. Therefore, switching to an environmentally benign and inexpensive solvent is highly desired. This work demonstrates that propylene carbonate (PC) successfully replaces ACN by fine-tuning of the supporting electrolytes. Results and Discussion
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2012

Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate

  • Michael North and
  • Marta Omedes-Pujol

Beilstein J. Org. Chem. 2010, 6, 1043–1055, doi:10.3762/bjoc.6.119

Graphical Abstract
  • Michael North Marta Omedes-Pujol School of Chemistry and University Research Centre in Catalysis and Intensified Processing, Bedson Building, University of Newcastle, Newcastle upon Tyne, UK, NE1 7RU 10.3762/bjoc.6.119 Abstract Propylene carbonate can be used as a green solvent for the asymmetric
  • (salen)NCS in propylene carbonate and dichloromethane. Reactions in both solvents obey overall second-order kinetics, the rate of reaction being dependent on the concentration of both the aldehyde and trimethylsilyl cyanide. The order with respect to VO(salen)NCS was determined and found to decrease from
  • 1.2 in dichloromethane to 1.0 in propylene carbonate, indicating that in propylene carbonate, VO(salen)NCS is present only as a mononuclear species, whereas in dichloromethane dinuclear species are present which have previously been shown to be responsible for most of the catalytic activity. Evidence
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2010
Other Beilstein-Institut Open Science Activities